INDIAN SCHOOL MUSCAT

FINAL TERM EXAMINATION

FEBRUARY 2019

SET C

CLASS XI

Marking Scheme – PHYSICS [THEORY]

Q.NO.	Answers	Marks
1.	By increasing the time of contact force on the vehicle is reduced, change in angular	1
2.	momentum remaining constant	
<u> </u>	Doesn't change Gravitational force <weak electromagnetic="" force<="" force<strong="" nuclear="" td=""><td>1</td></weak>	1
5.	OR	1
4	Any two characteristics of gravitational force	1
4.	If the particle size is too large all colours of white light are scattered equally giving white colour	1
5.	To convert sliding friction to rolling friction	
6.	Checking the equation $FS = \frac{1}{2}mv^2 - \frac{1}{2}mu^2$ is dimensionally correct	2
	OR	
	2 differences between accuracy and precision	
7.	(i) the relation between the refractive index and critical angle for a given pair of	1
	optical media.	
	(ii) 2 conditions for total internal reflection to occur.	1/2+1/2
8.	Law of conservation of angular momentum	1+1
	Statement and proof	
	OR	1
	 by bringing his arms and legs closer to the body in order to conserve angular momentum 	1
	(ii) The spokes to the cycle wheel increases the moment of inertia due to the	1
	increase in the distribution of mass. This opposes the change in the rotary	-
	motion of the wheel . Thus spokes fitted to the cycle wheel gives a steady	
	motion.	
9.	Angle of refraction in medium 2 is less than angle of incidence in medium 1. That is, the ra	1
	bending towards the normal. Therefore, medium 2 is optically denser than medium 1.	
	(ii) The refractive index of glass varies with the wavelength or color of the light used	1
10.	(i) the velocity vector is directed tangent to the circle	1
	(ii) two times	1
11.	Representing graphically the variation of extension with load in an elastic body.	1
	marking: (a) Hooke's law region and (b) Elastic limit	1/2+1/2
12.	$v_{\rm A} = +54 \rm km h^{-1} = 15 \rm m s^{-1}$	
	$v_{\rm B}^{\rm a} = -90 \text{ km h}^{-1} = -25 \text{ m s}^{-1}$	
	Relative velocity of B with respect to $A = v_B - v_A = -40 \text{ m s}^{-1}$	1

	Deleting and estimate the second state of the	1
	Relative velocity of ground with respect to $B = 0 - v_{\rm B} = 25 \text{ m s}^{-1}$.	1
13.	(i) schematic labelled ray diagram of a reflecting type telescope (cassegrain).	2
	(ii) any two important advantages of reflecting type telescope over refracting telescope.	1/2+1/2
	OR	
	(i) ray diagram to show the formation of image by a concave mirror when an object is	1
	placed between its focus and the pole.	
	(ii) Using the above ray diagram derive the mirror formula.	2
14.	three differences between reversible process and irreversible process.	1+1+1
15.	(i) Doppler effect-definition	1
15.	(ii) Mass, angular velocity, amplitude	1
	(iii) $\lambda/2$ and $\lambda/4$	$\frac{1}{\frac{1}{2} + \frac{1}{2}}$
		72 +72
16.		1 1/2
	Potential energy = $U = -4 \times \frac{Gm^2}{l} - 2 \times \frac{Gm^2}{\sqrt{2}l} = \frac{Gm^2}{l} \times \left(-4 - \sqrt{2}\right) = -5.41 \frac{Gm^2}{l}$	- / -
	For the last energy $= 0 = -\frac{1}{l} = \frac{1}{2} - \frac{1}{\sqrt{2}l} = \frac{1}{l} - \frac{1}{l} - \frac{1}{l} = 0.41 \frac{1}{l}$	
	The gravitational potential at the center of the square	
		1 1/2
	$V_{max} = -\frac{Gm}{Gm} - \frac{Gm}{Gm} - \frac{Gm}{Gm} = -4\frac{Gm}{Gm} = -4\sqrt{2}\frac{Gm}{Gm}$	1 / 2
	$V_{center} = -\frac{Gm}{\left(\frac{l}{\sqrt{2}}\right)} - \frac{Gm}{\left(\frac{l}{\sqrt{2}}\right)} - \frac{Gm}{\left(\frac{l}{\sqrt{2}}\right)} - \frac{Gm}{\left(\frac{l}{\sqrt{2}}\right)} = -4\frac{Gm}{\left(\frac{l}{\sqrt{2}}\right)} = -4\sqrt{2}\frac{Gm}{l}$	
	OR	
	W = mg = 63 N	1/2
	(ii) $vv = mg = 05 N$	/2
	$g_h R^2$	1/2
	$\frac{g_h}{g} = \frac{R^2}{\left(R + R/2\right)^2}$	/2
		1/2 +1/2
	$W_h = mg_h = m \times \frac{4}{9}g = \frac{4}{9}mg$	/2 1/2
17.	Statement and proof of Kepler's third law of planetary motion.	1+2
17.	(i) Statement and proof of work energy theorem.	1+2
10.		1
	(ii) decrease	
	(i) Thermal conductivity of copper is greater as compared to the conductivity	1
	of steel . With copper bottom , more heat is conducted inside which helps	1
	in the preparation of meals quickly.	1
	(ii) Wien's displacement law states that the black body radiation curve for	-
	different temperature peaks at a wavelength is inversely proportional to the	
	temperature b is a constant of proportionality called Wien's	
	displacement constant	
	(iii) High specific heat capacity is required because the heat absorbed by a	1
	substance is directly proportional to the specific heat of the substance.	1
	OR	
	(i) When birds swell their feathers, they trap air in the feather. Air being a poor	
	conductor prevents loss of heat and keeps the bird warm.	1
	(ii) The total radiant heat energy emitted from a surface is proportional to	1
	the fourth power of its absolute temperature (iii) So that there is enough margin for the tracks to expand and contract	
		1

	due to the temperature changes. If that gap is not left then	1
	the tracks might have enormous stress in them while expanding due to heat.	1
20	Obtaining an expression for maximum height, time of flight and horizontal range of an oblique projectile.	1 1+1+1
21	(i) Drawing position-time graph of two objects moving along a straight line when their relative velocity is non-zero.	1
	(ii) Yes, uniform circular motion (iii)zero	$\frac{1}{2} + \frac{1}{2}$ 1
	degree of freedom definition obtaining the ratio of specific heats for a monoatomic gas molecule.	1 2
	(i) no change(ii) Deriving an expression for rotational kinetic energy of a rigid body.	1 2
	(i) Any two difference between elastic and inelastic collision (ii) initial kinetic energy of bullet = $1/2 \text{ mv}^2$ = $\frac{1}{2} (0.05)(200 \times 200) = 1000 \text{ J}$ final KE is $\frac{1}{2} \text{ mv}^2 = 10\%$ of $\frac{1}{2} \text{ mu}^2$	1 1⁄2 +1⁄2
	$= \frac{1}{2} \text{ mv}^2 = (10/100) \times 1000$	1⁄2
	$= v^2 = 100 \times 2/0.05$	
	= v = 63.24 m/s	1⁄2
	OR	
	(i)Any 2 difference between conservative and non conservative force	1
	(ii)	
	Kinetic energy of moving car, $K = \frac{1}{2}mv^2$	
	$= \frac{1}{2} \times 1000 \times 5 \times 5 \text{ J} = 1.25 \times 10^4 \text{ J}$	1/2 +1/2
	$\frac{1}{2}kx^2 = 1.25 \times 10^4$	1⁄2
	x=2m	1/2
25	(i) Statement and proof of Bernoulli's theorem.	$\frac{1}{2} + 2$ $\frac{1}{2}$
	+diagram/	1
	(ii) <i>Oil</i> when poured over water spreads over the surface of water because of surface	

		1
	tension. Oil calms the sea waves because the surface film of oil prevents the generation of ripples on the exposed crests of the waves.	
	generation of hpples on the exposed crests of the waves.	1
	(iii)Reason To keep a piece of paper horizontal, you should blow over, not under it.(give explanation based on Bernoulli's theorem)	
	OR	
	(i) Defining terminal velocity, diagram and obtaining an expression for the terminal velocity of a sphere falling through a highly viscous fluid in a jar.	$\frac{1}{2} + \frac{1}{2}$
	(ii) By equation of continuity when we close the water tap with our fingers, the area at	1
	that point, from where water flows out, decreases and hence velocity of water increases.	
	(iii) The blood pressure in humans is greater at the feet than the brain. Therefore, pressure of liquid column increases with depth. The height of blood column inhuman body is more at feet than at the brain.	
		1
26	(i) proving the oscillations of a simple pendulum are simple harmonic	1
	deriving an expression for frequency of oscillations of simple pendulum.	1
	diagram	1
	(ii) At a certain point, the bridge would start oscillating to the same rhythm as that of the marching steps. This oscillation would reach a maximum peak when the bridge can no longer sustain its own strength and hence collapses. Therefore, soldiers are ordered	1
	to break their steps while crossing a bridge.	
	(iii) graph showing the variation of energy with respect to time for a harmonic oscillator executing damped oscillations.	1
	OR	
	(i) Explanation about the harmonics formed in an closed organ pipe with necessary diagram	1+1+1
	and proving that the harmonics are in the ratio 1:3:5:	1/2 +1/2
	(ii) two differences between stationary waves and progressive waves.	
	(iii) infinity	1

07		1.0
27	(i) Statement and proof of law of conservation of linear momentum.	1+2
	(;;)	
	(ii)	
	1/ ²	
	$a = -\frac{u}{2}$	1
	25	1
	90×90 m $^{-2}$	
	$=-\frac{90\times90}{2\times0.6}$ ms ⁻²	
	$= -6750 \text{ ms}^{-2}$	
	= -6750 ms	
	F=	
	$= 0.04 \text{ kg} \times 6750 \text{ ms}^{-2}$	
	= 270 N	1
	OR	
	(i)obtaining an expression for optimum speed and maximum permissible speed of a car on a	
	banked circular track. + free body diagram	1+2
	(ii)	
	$v = \sqrt{\mu r g}$	$\frac{1}{2} + \frac{1}{2}$
	$v=\sqrt{0.1 imes 3 imes 10}=1.732\ m/s$	
	But velocity of the cyclist is $18 \ km/h = 5 \ m/s$	
	hence cyclist will get slip.	1/2 + 1/2